-
Abschlussart: Zertifikat „Python“
Zertifikat „Machine Learning“ -
Abschlussprüfung: Praxisbezogene Projektarbeiten mit Abschlusspräsentationen
-
Unterrichtszeiten: VollzeitMontag bis Freitag von 8:30 bis 15:35 Uhr (in Wochen mit Feiertagen von 8:30 bis 17:10 Uhr)
-
Dauer: 8 Wochen
Programmierung mit Python
Grundlagen Python (ca. 1 Tag)
Geschichte, Konzepte
Verwendung und Einsatzgebiete
Syntax
Erste Schritte mit Python (ca. 5 Tage)
Zahlen
Zeichenketten
Datum und Zeit
Standardeingabe und -ausgabe
list, tuple dict, set
Verzweigungen und Schleifen (if, for, while)
Künstliche Intelligenz (KI) im Arbeitsprozess
Vorstellung von konkreten KI‐Technologien
sowie Anwendungsmöglichkeiten im beruflichen Umfeld
Funktionen (ca. 5 Tage)
Eigene Funktionen definieren
Variablen
Parameter, Rekursion
Funktionale Programmierung
Fehlerbehebung (ca. 0,5 Tage)
try, except
Programmunterbrechungen abfangen
Objektorientierte Programmierung (ca. 4,5 Tage)
Python-Klassen
Methoden
Unveränderliche Objekte
Datenklasse
Vererbung
Grafische Benutzeroberfläche (ca. 1 Tag)
Buttons und Textfelder
grid-Layout
Dateiauswahl
Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Machine Learning
Einführung in Machine Learning (ca. 5 Tage)
Warum Machine Learning?
Anwendungsbeispiele
Überwachtes Lernen, Unüberwachtes Lernen, Teilüberwachtes Lernen, Reinforcement Lernen
Beispiele für Datenbestände
Daten kennenlernen
Trainings-, Validierungs- und Testdaten
Daten sichten
Vorhersagen treffen
Überwachtes Lernen (ca. 5 Tage)
Klassifikation und Regression
Verallgemeinerung, Overfitting und Underfitting
Größe des Datensatzes
Algorithmen zum überwachten Lernen
Lineare Modelle
Bayes-Klassifikatoren
Entscheidungsbäume
Random Forest
Gradient Boosting
k-nächste-Nachbarn
Support Vector Machines
Conditional Random Field
Neuronale Netze und Deep Learning
Wahrscheinlichkeiten
Unüberwachtes Lernen (ca. 5 Tage)
Arten unüberwachten Lernens
Vorverarbeiten und Skalieren
Datentransformationen
Trainings- und Testdaten skalieren
Dimensionsreduktion
Feature Engineering
Manifold Learning
Hauptkomponentenzerlegung (PCA)
Nicht-negative-Matrix-Faktorisierung (NMF)
Manifold Learning mit t-SNE
Clusteranalyse
k-Means-Clustering
Agglomeratives Clustering
Hierarchische Clusteranalyse
DBSCAN
Clusteralgorithmen
Evaluierung und Verbesserung (ca. 2 Tage)
Modellauswahl und Modellevaluation
Abstimmung der Hyperparameter eines Schätzers
Kreuzvalidierung
Gittersuche
Evaluationsmetriken
Klassifikation
Projektarbeit (ca. 3 Tage)
Zur Vertiefung der gelernten Inhalte
Präsentation der Projektergebnisse
Änderungen möglich. Die Lehrgangsinhalte werden regelmäßig aktualisiert.
Nach dem Kurs verfügst du über ein kompaktes, grundlegendes Wissen in der Programmierung mit Python. Du bist in der Lage, die Programmiersprache mit ihren Klassen, Bibliotheken und Funktionen sicher zu handhaben.
Zudem besitzt du relevante Kenntnisse im Thema Machine Learning. Du kennst die wichtigsten Gründe für die Verwendung des Machine Learning, Anwendungsgebiete sowie die verschiedenen Kategorien und Konzepte des Maschinellen Lernens. Mit Kenntnissen in der Evaluierung und der Verbesserung rundest du dein Wissen ab.
Informatiker:innen, Fachinformatiker:innen, Programmierer:innen und Fachkräfte mit entsprechender Berufserfahrung.
Die Vielseitigkeit von Python macht Mitarbeiter:innen mit entsprechenden Kenntnissen in zahlreichen Branchen und Unternehmen attraktiv. Vor allem in der Webentwicklung, dem Machine Learning sowie der Datenanalyse werden Personen mit Programmierkenntnissen in Python gesucht.
Machine Learning kommt in zahlreichen Anwendungsgebieten zum Einsatz: Die selbstständige Entwicklung geeigneter Spamfilter für das Internet, die Erstellung präziser Prognosen über Lagerbestände im Bereich Supply Chain Management oder die Entwicklung von Kaufprognosen für einzelne Kundschaft bzw. Kundensegmente im Marketing. Mitarbeiter:innen, die im Fachbereich Machine Learning qualifiziert sind, können branchenübergreifend eingesetzt werden und sind am Arbeitsmarkt entsprechend vielfach nachgefragt.
Dein aussagekräftiges Zertifikat gibt detaillierten Einblick in deine erworbenen Qualifikationen und verbessert deine beruflichen Chancen.
Didaktisches Konzept
Deine Dozierenden sind sowohl fachlich als auch didaktisch hoch qualifiziert und werden dich vom ersten bis zum letzten Tag unterrichten (kein Selbstlernsystem).
Du lernst in effektiven Kleingruppen. Die Kurse bestehen in der Regel aus 6 bis 25 Teilnehmenden. Der allgemeine Unterricht wird in allen Kursmodulen durch zahlreiche praxisbezogene Übungen ergänzt. Die Übungsphase ist ein wichtiger Bestandteil des Unterrichts, denn in dieser Zeit verarbeitest du das neu Erlernte und erlangst Sicherheit und Routine in der Anwendung. Im letzten Abschnitt des Lehrgangs findet eine Projektarbeit, eine Fallstudie oder eine Abschlussprüfung statt.
Virtueller Klassenraum alfaview®
Der Unterricht findet über die moderne Videotechnik alfaview® statt - entweder bequem von zu Hause oder bei uns im Bildungszentrum. Über alfaview® kann sich der gesamte Kurs face-to-face sehen, in lippensynchroner Sprachqualität miteinander kommunizieren und an gemeinsamen Projekten arbeiten. Du kannst selbstverständlich auch deine zugeschalteten Trainer:innen jederzeit live sehen, mit diesen sprechen und du wirst während der gesamten Kursdauer von deinen Dozierenden in Echtzeit unterrichtet. Der Unterricht ist kein E-Learning, sondern echter Live-Präsenzunterricht über Videotechnik.
Die Lehrgänge bei alfatraining werden von der Agentur für Arbeit gefördert und sind nach der Zulassungsverordnung AZAV zertifiziert. Bei der Einreichung eines Bildungsgutscheines oder eines Aktivierungs- und Vermittlungsgutscheines werden in der Regel die gesamten Lehrgangskosten von deiner Förderstelle übernommen.
Eine Förderung ist auch über den Europäischen Sozialfonds (ESF), die Deutsche Rentenversicherung (DRV) oder über regionale Förderprogramme möglich. Als Zeitsoldat:in besteht die Möglichkeit, Weiterbildungen über den Berufsförderungsdienst (BFD) zu besuchen. Auch Firmen können ihre Mitarbeiter:innen über eine Förderung der Agentur für Arbeit (Qualifizierungschancengesetz) qualifizieren lassen.